
Re: Correlation of Squares design
"Stop the presses!" (more accurate ratio)
Regarding Pythagorean Theorem: a^2 + b^2 = c^2
Given: Diameter = 2.0 = c, SoCS = sqrt(Pi) = b
where SoCS = Side of Circle's Square

Therefore, c^2 - b^2 = a^2
4 - 3.1415926535897932384626433832795..
= 0.8584073464102067615373566167205.. = a^2
sqrt(0.8584073464102067615373566167205..) a^2
= 0.92650275035220848584275966758914.. = a
sqrt(3.1415926535897932384626433832795..) b^2
= 1.7724538509055160272981674833411.. = b

Ratio of long side (b) to short side (a):
1.7724538509055160272981674833411..
/ 0.92650275035220848584275966758914..
= 1.9130583802711007947403078280205..
In the Correlation of Squares geometry, yellow line segments reflect this ratio
in at least three sets of line segments, with one set right under Euler's Nose.
Rod
