
Re: Paleo Pi Pointers* design (a few numbers)
Integration of 7 squared circles having numerical patterns
suggesting that Pi/2 is the geometric midpoint of 1 and 2
... when the circles are squared precisely.

* "Paleo" - Greek origin: palaio-, from palaios.
Supporting numbers:
2 - .429203673205103380768678308361.. = Pi/2
1 + .570796326794896619231321691639.. = Pi/2
.. 1.000000000000000000000000000000
0.56418958354775628694807945156077.. = sqrt(1/Pi)
x 2 = 1.1283791670955125738961589031215..
^ 2 = 1.2732395447351626861510701069801..
/ 2 = 0.6366197723675813430755350534900..

The seven squared circles,
including their relationship to Pi/2:
D = 4(sqrt(1/Pi)), 2, sqrt(Pi),
D = Pi/2,
D = 2(sqrt(1/Pi)), 1, sqrt(Pi)/2
2.2567583341910251477923178062430.. = 4(sqrt(1/Pi))
2.0000000000000000000000000000000.. = 2
1.7724538509055160272981674833411.. = sqrt(Pi)
1.5707963267948966192313216916398.. = Pi/2
1.1283791670955125738961589031215.. = 2(sqrt(1/Pi))
1.0000000000000000000000000000000.. = 1
0.8862269254527580136490837416705.. = sqrt(Pi)/2
2.2567583341910251477923178062430.. = 4(sqrt(1/Pi))
1.5707963267948966192313216916398..
x (1.1283791670955125738961589031215..)^2 = 2
1.5707963267948966192313216916398..
x 1.1283791670955125738961589031215..
= 1.7724538509055160272981674833411.. = sqrt(Pi)
1.5707963267948966192313216916398.. = Pi/2
1.1283791670955125738961589031215.. = 2(sqrt(1/Pi))
1.5707963267948966192313216916398..
x 0.6366197723675813430755350534900.. = 1
1.5707963267948966192313216916398..
x 0.5641895835477562869480794515607..
= 0.8862269254527580136490837416705.. = sqrt(Pi)/2
Rod
