
Re: Sqrt(Pi) RIP design
(the supporting "wiggly numbers")

Hypotenuse and long side ratios of the
two integrated circle-squaring right triangles
where SoCS = Side of Circle's Square:
4 / 2(sqrt(Pi)) = 2(sqrt(1/Pi)) = circle-squaring ratio of RT
= 4.0 / 3.5449077018110320545963349666823..
= 1.1283791670955125738961589031215..
4.0 x 2(sqrt(1/Pi)) = 4(sqrt(1/Pi)) = large triangle's hypotenuse
= 4.0 x 1.1283791670955125738961589031215..
= 4.5135166683820502955846356124862..
4(sqrt(1/Pi)) / 2(sqrt(Pi)) = 2(sqrt(1/Pi))^2
= 4.5135166683820502955846356124862..
/ 3.5449077018110320545963349666823..
= 1.2732395447351626861510701069801..
= 2(sqrt(1/Pi))^2 = cross-triangles' increment
Circle's radius x sqrt(Pi) = SoCS
= 2(sqrt(1/Pi)) x sqrt(Pi)
= 1.1283791670955125738961589031215..
x 1.7724538509055160272981674833411..
= 2.0 = SoCS

Thus, 4.0 is the square of a circle
having a diameter of 4(sqrt(1/Pi))
... and the geometry agrees!
Rod ...

("The stars at night ...")