
Re: Trapezoidal Transcendence II design
I. Analysis of Trapezoidal Transcendence
Given: Diameter = 2.0 (largest circle)
SocS = 2.0
---------------- 1.1283791670955125738961589031215.. 2(sqrt(1/Pi))
SoCS = sqrt(Pi)
---------------- 1.2533141373155002512078826424055.. sqrt(Pi)/sqrt(2)
SoCS = sqrt(2)

How do these three possible SoCS correlate?
2.0
/ 1.7724538509055160272981674833411.. sqrt(Pi)
= 1.1283791670955125738961589031215.. 2(sqrt(1/Pi))
1.7724538509055160272981674833411.. sqrt(Pi)
/ 1.4142135623730950488016887242097.. sqrt(2)
= 1.2533141373155002512078826424055.. sqrt(Pi)/sqrt(2)
1.1283791670955125738961589031215.. 2(sqrt(1/Pi))
x 1.2533141373155002512078826424055.. sqrt(Pi)/sqrt(2)
= 1.4142135623730950488016887242097.. sqrt(2)
Therefore, sqrt(2)^2 = 2.0
II. Derivation of Trapezoidal Transcendence II geometry
by analysis of 2(sqrt(1/Pi)) and sqrt(Pi)/sqrt(2)
1.1283791670955125738961589031215.. 2(sqrt(1/Pi))
/ 1.4142135623730950488016887242097.. sqrt(2)
= 0.79788456080286535587989211986838.. 2(sqrt(1/Pi))/sqrt(2)
1.2533141373155002512078826424055.. sqrt(Pi)/sqrt(2)
/ 1.4142135623730950488016887242097.. sqrt(2)
= 0.8862269254527580136490837416702.. sqrt(Pi)/2

I recognized 0.79788456.. as the side of an inscribed square,
then created that circle and its inscribed square, then followed
the clue of 0.88622692.. (sqrt(Pi)/2)
... ultimately giving two integrated circles squared
where D = 2(sqrt(1/Pi)) and 1.0
Rod
