
Re: concentric Patterns of Pi
(more cPoP geometry for a new design)

1/Pi was missing from three diameters;
here's the restatement "for the record".

Also, the patterns suggest that diameters
1, 2 and 4 should have a Pi-qualified expression,
so x(Pi/Pi) is a reasonable placeholder.

"Twas the night before Christmas ..."
and Santa's cookies were baking in the oven.
Say what? "These patterns have pleasing visual aroma".

Draw these concentric circles:
0.785398163397448309615660845819.. Pi/4
0.886226925452758013649083741670.. (sqrt(Pi))/2
1.0 .......................................... 1(Pi/Pi)
1.128379167095512573896158903121.. 2(sqrt(1/Pi))
1.570796326794896619231321691639.. Pi/2
1.772453850905516027298167483341.. sqrt(Pi)
2.0 .......................................... 2(Pi/Pi)
2.256758334191025147792317806242.. 4(sqrt(1/Pi))
3.141592653589793238462643383278.. Pi
3.544907701811032054596334966682.. 2(sqrt(Pi))
4.0 .......................................... 4(Pi/Pi)
4.513516668382050295584635612484.. 8(sqrt(1/Pi))

Draw this radius, then straight lines
from the top of the circles to the radius
(creates Pythagorean triangles; x and y
axes should be drawn first).
62.40288736430939554826779524767.. degrees
¡buen apetito!

(design expected post-Santa)
Rod